

Sebastian Santos Bautista - 201816848 Álgebra Abstracta 2 MATE 3121

Parcial 2 - Parte 1

Carolina Benedetti Martes 28 Abril, 2020

(1)

Sea \mathbb{F} un cuerpo de característica p tal que $[\mathbb{F} : \mathbb{F}_p] = n$. Pruebe que $|\mathbb{F}| = p^n$.

Dem: En primera instancia, es importante notar que \mathbb{F} efectivamente es una extensión de \mathbb{F}_p , debido a que \mathbb{F} es un cuerpo de característica p y, por lo tanto, su cuerpo primo generado por la identidad debe ser \mathbb{F}_p .

Además, como $[\mathbb{F} : \mathbb{F}_p] = n$, tenemos que existe una base de n elementos de \mathbb{F} visto como un \mathbb{F}_p - espacio vectorial. Luego, existen $[v_i]_{i=1,\dots,n}$ tq' $v_i \in \mathbb{F}$ y todo $v \in \mathbb{F}$ puede ser escrito como una combinación lineal de la forma $v = a_1v_1 + \dots + a_nv_n$ con coeficientes $a_i \in \mathbb{F}_p$.

Finalmente, vea que, como $a_i \in \mathbb{F}_p$, existen p elementos diferentes para colocar en n posiciones. En consecuencia, existen $p...p = p^n$ combinaciones lineales diferentes y, asimismo, elementos de \mathbb{F} .

(2)

Sea \mathbb{F}_{p^n} un cuerpo finito con p^n elementos. Pruebe que \mathbb{F}_{p^n} es el cuerpo de descomposición del polinomio $x^{p^n} - x$ sobre \mathbb{F}_p .

Dem: Primero, sabemos que $f(x) = x^{p^n} - x$ es separable en \mathbb{F}_p , pues $Df(x) = p^n x^{p^n-1} - 1 = -1$ en tanto que $p^n x^{p^n-1} = 0$ por ser \mathbb{F}_p un cuerpo de característica p. Por lo tanto, claramente el máximo común divisor de ambos polinomios es 1. Lo anterior implica que f(x) y Df(x) son primos relativos, lo que es equivalente a que f(x) es separable y, en consecuencia, tiene exactamente p^n raíces diferentes.

Vea que $x^{p^n}-x=x(x^{p^n-1}-1)$ y $0\in\mathbb{F}_{p^n}$ es una raíz de f(x). Ahora bien, queremos demostrar que las otras p^n-1 raíces de $x^{p^n-1}-1$ coinciden con los p^n-1 elementos de $\mathbb{F}_{p^n}-0=\mathbb{F}_{p^n}^*$. Para esto, utilizamos el hecho de que $\mathbb{F}_{p^n}^*$ es un grupo abeliano multiplicativo (asociativo, $1\in\mathbb{F}_{p^n}^*$, inversos). De lo anterior, se sigue que se cumplen el teorema de Lagrange y sus corolarios. Específicamente, para todo $a\in\mathbb{F}_{p^n}^*$, $|a||p^n-1$. Luego, también se cumple que, si |a|=k y $kq=p^n-1$, $a^{p^n-1}=a^{kq}=1\implies a^{p^n-1}-1=0$.

Por lo tanto, los elementos de $\mathbb{F}_{p^n}^*$ coinciden con las raices de $x^{p^n-1}-1$ y \mathbb{F}_{p^n} es un cuerpo que posee las p^n raíces de f(x). Finalmente, se puede concluir que \mathbb{F}_{p^n} es efectivamente el cuerpo de descomposición, pues es imposible hallar un cuerpo mas pequeño y que posea todas las p^n raíces de f(x) por la minimalidad de la cardinalidad de \mathbb{F}_{p^n} .

(3)

Muestre que $\mathbb{F}_{p^n}/\mathbb{F}_p$ es Galois y que \mathbb{F}_{p^n} es una extensión simple sobre \mathbb{F}_p . Describa el grupo $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$.

Dem: Primero, demostraremos los primeros dos puntos:

- $\mathbb{F}_{p^n}/\mathbb{F}_p$ es Galois: Como \mathbb{F}_{p^n} es cuerpo de descomposición de un polinomio separable sobre \mathbb{F}_p , luego, por teorema, esto es equivalente a que $\mathbb{F}_{p^n}/\mathbb{F}_p$ es Galois
- $\underline{\mathbb{F}_{p^n}}$ es simple: \mathbb{F}_{p^n} es una extensión finita y separable, pues todos sus p^n elementos son raíces del polinomio separable f(x) sobre \mathbb{F}_p . Luego, por teorema del elemento primitivo, se concluye que \mathbb{F}_{p^n} es una extensión simple sobre \mathbb{F}_p .

A continuación, pasamos a describir el grupo $G = Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$. Inicialmente, sabemos que |G| = n, debido a que, por el primer ejercicio, existe una base de n elementos para generar el cuerpo \mathbb{F}_{p^n} como un \mathbb{F}_p -espacio vectorial y, además, como $\mathbb{F}_{p^n}/\mathbb{F}_p$ es Galois, |G| debe ser igual al grado de esta extensión.

Ahora bien, sabemos que todo $\varphi \in G$ es tal que para todo $\alpha \in \mathbb{F}_{p^n}$ algebraico (Note que todo elemento en \mathbb{F}_{p^n} es algebraico, pues es raíz de f(x) y, por lo tanto, su polinomio minimal debe ser un divisor irreducible de f(x) con grado n) se cumple que $\varphi(\alpha)$ es también una raíz del polinomio minimal de α en \mathbb{F}_p . En este orden de ideas, vea que el homomorfismo de Frobenius $\varphi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ tq' $a \mapsto a^p$ debe pertenecer a G. Primero, es claro que φ fija a todo elemento perteneciente a \mathbb{F}_p , por ser este un cuerpo cíclico de

orden p. Por otro lado, verificamos que es un homomorfismo de anillos:

$$\varphi(xy) = (xy)^p$$

$$= x^p y^p$$
(1)

$$\varphi(x+y) = (x+y)^p$$

$$= x^p + y^p$$
(2)

donde la última igualdad es valida por ser un cuerpo finito de característica p.

Mas aún, φ es 1-1, pues $x^p = 0 \leftrightarrow x = 0$ debido a que \mathbb{F}_{p^n} es un cuerpo y no tiene divisores de cero. Luego, como \mathbb{F}_{p^n} es finito, φ es un automorfismo de anillos.

Finalmente, se puede ver $\varphi^i(x) = x^{p^i}$ es un automorfismo también perteneciente a G para i = 0, ..., n-1, donde $\varphi^0(x) = Id(x) = x$. Sin embargo, φ^n vuelve a ser la identidad, pues $\varphi^n(x) = x^{p^n} = x^{p^n-1}x = x$ para $x \in \mathbb{F}_{p^n}^*$ y $\varphi^n(0) = 0$. Por lo tanto, esto nos hace concluir que G es el grupo de n elementos generados por φ de tal forma que $G = \{Id, \varphi, \varphi^2, ..., \varphi^{n-1}\}$.

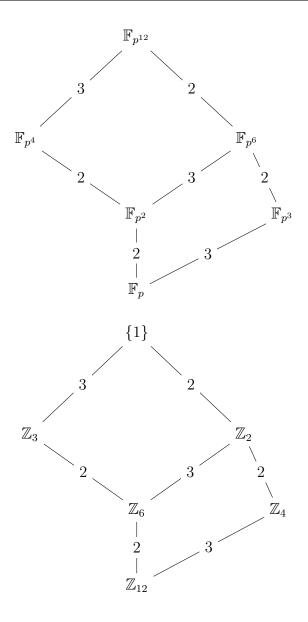
(4)

Muestre que un subcuerpo de \mathbb{F}_{p^n} tiene orden p^d donde d|n y existe un subcuerpo para cada tal d.

Dem: Por el ejercicio anterior, sabemos que $G = \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ es un grupo cíclico de n elementos. Por resultados de teoría de grupos, sabemos que tenemos un subgrupo H tq' |H| = d por cada d|n

Ahora bien, por el teorema fundamental de Galois, sabemos a hay una biyección entre subgrupos de G y subcuerpos de \mathbb{F}_{p^n} . Mas aun, a cada subcuerpo E de \mathbb{F}_{p^n} le corresponde un único subgrupo H de G que lo fija y viceversa. Además, por el mismo teorema, también sabemos que $[E:\mathbb{F}_p]=|G:H|$. Por lo tanto, sea $k\leq n$ arbitrario tq' ke=n, tenemos que existe $H\leq G$ de k elementos y, por teo. de Galois, tenemos que $E=K^H$ es tal que $[E:\mathbb{F}_p]=\frac{n}{k}=e$. Luego, aplicando el resultado obtenido en el primer ejercicio, $|E|=p^e$. De manera similar, si queremos obtener ahora el subcuerpo con p^k elementos basta con tomar $H\leq G$ tq' |H'|=e y determinar su subcuerpo fijo $E'=K^{H'}$, el cual tendrá cardinalidad p^k por los mismos argumentos ya explicados. De manera similar, se pueden obtener los demas subcuerpos de \mathbb{F}_{p^n} a partir de los divisores de n.

Finalmente, llegamos a que, por el teorema de Galois, todos los subcuerpos de \mathbb{F}_{p^n} deben ser subcuerpo fijo de algún subgrupo de G. Luego, por lo mostrado, cada uno es de la forma \mathbb{F}_{p^d} y existe un único de ellos por cada d|n.



(5)

Dibuje el Diagrama de subcuerpos de $\mathbb{F}_{p^{12}}$ y el diagrama de subgrupos de $\mathrm{Gal}(\mathbb{F}_{p^{12}}/\mathbb{F}_p)$

Para el diagrama anterior, hacemos la siguiente simplificación. Sabemos que el grupo cíclico de 12 elementos de $\mathbb{F}_{p^{12}}$ es isomorfo a \mathbb{Z}_{12} . Además, se encuentra ordenado para que el subgrupo coincida con su subcuerpo fijo del diagrama de subcuerpos.